tested 190817 using SpinDynamica 3.0.1 under Mathematica 11.0
Needs ["SpinDynamica`"]
SpinDynamica version 3.0.1 loaded

ModifyBuiltln: The following built-in routines have been modified in SpinDynamica:
\{Chop, Dot, Duration, Exp, Expand, ExpandAll, NumericQ, Plus, Power, Simplify, Times, WignerD\}.
Evaluate ??symbol to generate the additional definitions for symbol.

SetSpinSystem[1]

SetSpinSystem: the spin system has been set to $\left\{\left\{1, \frac{1}{2}\right\}\right\}$
SetBasis: the state basis has been set to ZeemanBasis $\left[\left\{\left\{1, \frac{1}{2}\right\}\right\}\right.$, BasisLabels \rightarrow Automatic $]$.
SetOptions [Plot, PlotRange \rightarrow \{-1, 1\}, Frame \rightarrow True];

time-dependent pulse shapes

A simple trajectory of z-magnetization under a rf field along the (rotatingframe) x-axis:

Modulate the amplitude of the rf field using a time-dependent function
RfAmplitude[t_]:=2 \quad 5 $\operatorname{Exp}\left[-\mathrm{t}^{\wedge} 2\right]$;

note that the amplitude is only at the beginning of the evolution. Now simulate:

```
Plot[
    Evaluate[
        Trajectory[opI["z"] -> opI["z"],
            {Function[t, RfAmplitude[t] opI["x"]], 10}
        ][t]
    ],
    {t, 0, 10}
]
```


the pulse only acts at short times where its amplitude is large
Two consecutive pulses of the same form
RfAmplitude[t_]:=2 $\quad \mathbf{5} \operatorname{Exp}\left[-\mathrm{t}^{\wedge} 2\right]$;

```
Plot[
    Evaluate[
        Trajectory[opI["z"] -> opI["z"],
            {{Function[t, RfAmplitude[t] opI["x"]], 10},
                {Function[t, RfAmplitude[t] opI["x"]], 10}}
        ][t]
    ],
    {t, 0, 20}
]
```


note that the second event does not influence the spins since the pulse shape is referenced to the global time coordinate t, so the second pulse has negligible amplitude.

Two consecutive pulses of the same form, but using a local time coordinate τ

RfAmplitude[t_] :=2 $\quad 5 \operatorname{Exp}\left[-\mathrm{t}^{\wedge} 2\right]$;
The ShapeFunction[\{, $1 / 2\}$, function] syntax uses a local time variable τ which has a time origin at the centre of the event in which it occurs.

ShapedPulse[1, 10, \{ τ, RfAmplitude[τ]\}]
ShapedPulse $\left[\{1\}, 10,\left\{\left\{\tau, \frac{1}{2}\right\},\left\{10 e^{-\tau^{2}} \pi, 0,0\right\}\right\}\right]$
shape $=\{$ ShapeFunction $[\{\tau, 1 / 2\}, \operatorname{RfAmplitude}[\tau]$ opI["x"]], 10\};

```
Plot[
    Evaluate[
        Trajectory[opI["z"] -> opI["z"],
                {shape, shape}
        ][t]
    ],
    {t, 0, 20}, PlotRange }->\mathrm{ Automatic
]
```


The ShapeFunction[\{ $\tau, 0\}$, function] syntax uses a local time variable τ which has a time origin at the centre of the event in which it occurs.

```
shape = {ShapeFunction[{\tau, 0}, RfAmplitude[ [] opI["x"]], 10};
```

Plot [
Evaluate[
Trajectory[opI["z"] \rightarrow opI["z"],
\{shape, shape\}
] [t]
],
\{t, 0, 20\}, PlotRange \rightarrow Automatic
]

The ShapeFunction[\{ $\tau, 1\}$,function] syntax uses a local time variable τ which has a time origin at the end of the event in which it occurs.
shape $=\{$ ShapeFunction $[\{\tau, 1\}, \operatorname{RfAmplitude}[\tau]$ opI["x"]], 10\};

```
Plot[
    Evaluate[
        Trajectory[opI["z"] -> opI["z"],
            {shape, shape}
        ][t]
    ],
    {t, 0, 20}, PlotRange }->\mathrm{ Automatic
]
```



```
Plot[
    Evaluate[
        Trajectory[opI["z"] -> opI["z"],
            {ShapedPulse[1, 10, {{\tau, 1}, RfAmplitude[\tau]}],
            ShapedPulse[1, 10, {{\tau, 1}, RfAmplitude[\tau]}]}
        ][t]
    ],
    {t, 0, 20}, PlotRange }->\mathrm{ Automatic
]
```


Two consecutive pulses using a local time variable τ as well as a global time variable t

This syntax is usually needed if two pulses must be phase coherent with each other but may also have local defined amplitude or phase shapes.
shape $=\{$ ShapeFunction $[t,\{\tau, 1 / 2\}, \operatorname{RfAmplitude[~} \tau]$ opI["x"] Cos[2 $\pi t]$], 10\};

```
Plot[
    Evaluate[
    Trajectory[opI["z"] -> opI["z"],
        {shape, shape}
        ][t]
    ],
    {t, 0, 20}
]
```


