Mathematics Textbook Analysis; Supporting the implementation of a new Mathematics Curriculum

Lisa O'Keeffe University of Bedfordshire

July 29th 2014

Introduction

Mathematics Textbooks

- have a major influence on classroom practice (Valverde et al., 2002).
- is one of the key factors in implementing mathematics curricula.
 (Schmidt et al., 1997)
- organised in a purposeful way, and consequently their content and structure are important for the promotion of a specific vision of mathematics curriculum, which in turn impact directly on students' learning (Robitaille & Travers, 1992).
- TIMSS (2005) conceives and develops a powerful link between curriculum and textbooks, suggesting the textbook can be considered as a 'surrogate curriculum'.

Irish Context

- Historically influenced by commercially produced school textbooks
 - a view of mathematics concerned mainly with skills and instrumental learning
 - over reliance on mathematics textbooks
 - contributor factor to the low uptake of higher level mathematics in state examinations

(NCCA, 2005).

 discontinuity between the senior primary school curriculum and the lower secondary school textbooks.

(Cosgrove, Oldham, & Close, 2005)

 Which is affecting the students' transition from primary to secondary education.

(Smyth, McCoy, & Darmody, 2004)

Irish Context

- Irish Junior Cycle Mathematics Curriculum
- The 2005 NCCA curriculum review and consultation discussion paper
 - create and implement a new second level mathematics curriculum -Project Maths
 - piloted in twenty four schools in Ireland during the period 2008-2010.
 - implemented nationally in September 2010.
- Project Maths is a five strand curriculum;
 - Statistics and Probability,
 - Geometry and Trigonometry,
 - Number,
 - Algebra
 - Functions

Irish Context

- cooperating teachers were required to evaluate the resource materials and provide feedback,
 - No new mathematics textbooks were introduced by the Project Maths team with the new curriculum.
- However, as each strand was rolled out into schools nationwide some textbook materials emerged,
 - supplement material to be used in conjunction with previous textbooks
- The Project Maths development team urged teachers to be flexible in their approach to selecting and using textbooks highlighting that
 - 'no single textbook' can meet the needs
 - somewhat limited by the 'linear presentation of ideas'

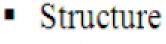
Background to the Study

- Background to the report
- NCCA commissioned the National Centre for Excellence in Mathematics and Science Teaching and Learning (NCE-MSTL) to conduct a review of school mathematics textbooks published commercially for Project Maths.
- The report (O'Keeffe & O'Donoghue, 2011) was published in 2011 at a time when a significant number of new textbooks were made available for Project Maths
- The intention of the report was to offer an objective evaluation of a selection of new textbooks available for Project Maths.

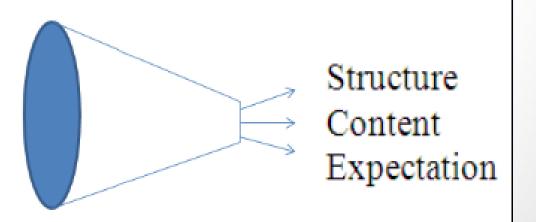
Theoretical Framework

TIMSS

- TIMSS focuses on curriculum as a means of comparing education systems.
- ▶ TIMSS model of curriculum:
 - Intended curriculum
 - Implemented curriculum
 - Attained curriculum
- Curriculum framework:
 - Subject matter content
 - Performance expectations
 - Perspectives


- Structure
- Expectation
- Perspectives

Methodology


Theoretical Framework

- Structure
 - Structure
 - Content
- Expectation
- Perspectives

TIMSS+ Instrument

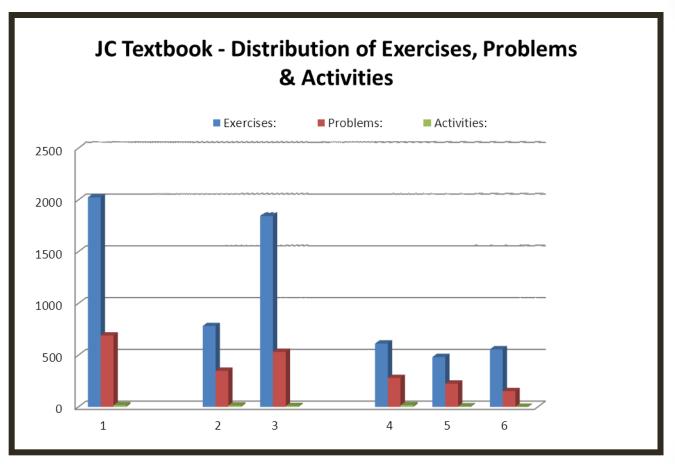
- Structure
- Content
- Expectation

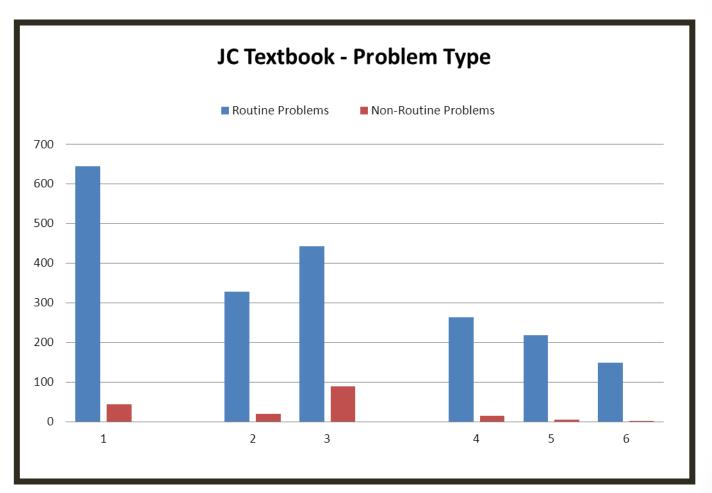


Specially Constructed Curricula (SCC) Subcategories of PM

- 6 SCC
 - Junior Cycle Curricula
 - Common Introductory Course (CIC)
 - ▶ Strands 1–5 O
 - Strands 1&2 O
 - Senior Cycle Curricula
 - Strands 1&2 O
 - Strands 1&2 H
 - Strand 2 H
- 10 Textbooks
 - 14 disaggregated "textbooks"

Methodology


Overview


Example of Main Findings

- Structure
- Content
- Expectation

Content Analysis:

Content Analysis:

Expectation Analysis: Main Findings

SCC 2	Textbook 1	Textbook 2
Omissions when compared with PM syllabus:	 Generalising (S3&4) Performing more complex procedures (S2&4) Formulating & Clarifying Problems (S2&4) Developing Strategies (S2&4) Predicting (S4) Developing Algorithms (S3) 	 Generalising (S3&4) Recognising Equivalents (S2) Developing Strategies (S2,3&4) Predicting (S1&4)
Absent from Strand 4	 Conjecturing Justifying & Proving Use of Vocabulary & notations Describing & Discussing 	 Conjecturing Justifying & Proving Use of Vocabulary & notations Describing & Discussing
Syllabus key expectations: (under- represented)	 Inquiry based Learning Problem Solving in Context Using Graphics to assist Problem Solving 	 Inquiry based Learning Problem Solving in Context Using Graphics to assist Problem Solving

Report Conclusion:

Text- book	Structure	Content	Expectation
1	 High narration Low instructional narration Key terms accentuated by printing devices V. Large number graphics Ex:Pr is 3:1 2% of total are non-routine Strand 4 - problems not integrated 	 Gaps: ICT Good consideration to motivational factors 	 Lack of focus on mathematical thinking Underrepresentati on of Problem Solving in context
2		Reasonably well aligned with PM	 Key Expectations Omitted in Strand 4 Problem Solving (S2 & 4)

Key findings

- The summary of the key findings suggests that no one textbook met the needs of the new mathematics curriculum but there were some genuine attempts.
- While there were structural differences, as expected, across the disaggregated textbooks the mismatches with regard content and expectation are of primary concern.
- Content omissions such as
 - 'Domain and Range', 'Linear Functions' and 'Proportionality Problems'
- Similarly key expectation omissions such as:
 - a focus on 'Developing Algorithms', 'Performing more Complex Procedures', 'Formulating & Clarifying Problems' and 'Across and Inter Subject Connections'.
- Further to this a note in the expectations data indicates that a greater emphasis could be placed on 'inquiry based learning', 'problem solving in context' and the 'use of graphics to assist with problem solving'.
- A further key finding was the noteworthy omissions of the integration of ICT throughout all textbooks and disparities between approaches to teaching for understanding and problem solving.

Implications...

- The above findings indicate a mismatch between curriculum and textbook expectations.
- Ball & Cohen (1996) mismatch could obstruct a complete 'change' in approaches to teaching and learning

- The previous mathematics curriculum
 - providing predictable exams,
 - large chunks of the curriculum could be omitted entirely
 - students could rote learn some key information

(Oldham, 2001).

Implications...

- Project Maths identifies itself as a new mathematics
 curriculum with a new focus aimed at improving the teaching
 and learning of mathematics and hence improving students'
 comprehension and understanding (Jeffes et al., 2012)
- Project Maths intends to counteract this with a change in teaching methodologies and a focus on teaching for understanding and application (Lynch, 2011).
 - fully informed on expectations and good practices
 - Textbook must echo the expectations of the curriculum (Ball & Cohen, 1996, Remillard, 2005)

Implications for Teachers...

- NCCA identify that Irish mathematics teachers
 - focus entirely on routine procedures
 - place little or no value on the concepts of understanding, communicating, validating and justifying mathematics.
- This is reflected in the previous Irish textbooks (O'Keeffe, 2011) by the dominance of:
 - the expectation to perform routine procedures
 - minimised or omitted focus on predicting, verifying, justifying, critiquing and discussing mathematics.
- Ball & Cohen (1996) discuss the difficulties teachers face when asked to change practices, strategies and approaches to teaching
 - Such difficulties are increased in light of the findings of Ní Ríordáin & Hannigan (2009).

Conclusion:

- Textbook analysis
 - provided an insight into how the focus and expectations of the new mathematics curriculum was developed in the supporting mathematics textbooks.
 - raised awareness among teachers about the differences between textbooks, the options available to them
 - the key features and expectations of Project Maths were discussed from a different perspective.
- This report reinforces a method of textbook analysis than enables direct comparison between mathematics curricula and textbooks
 - while explicitly identifying the impact that such can have on ensuring greater cohesion between the message of the curriculum and the message of the textbook.

Thank You Very Much.