Technological resources that come with mathematics textbooks: potentials and constraints

António Domingos
José Manuel Matos
Mária Almeida
Paula Teixeira
Summary

- Introduction
- Theoretical framework
- Methodology
- Learning environment
- Implementation of the learning environment
- Data analysis
- Final remarks
Introduction

• Traditionally in educational systems:
 • there is a strong tradition of using textbooks;
 • occasionally textbooks are accompanied by technological tools (CD-ROMs, web pages or learning platforms);
 • the curriculum modelled by teachers is based mainly on the use of the textbook adopted in paper format;
 • often teachers use some technological tools associated with textbooks, especially those that do not involve student’s manipulation (eg. ppoints);
Introduction

- This presentation is about the use of technological tools in the context of the classroom.

- It is based on the curriculum presented to teachers, through textbooks and electronic materials and the aim is to explain how these materials become learning tools.

- This study is based in one of the technological mediators available by one of the Portuguese publishing houses, *Escola Virtual*, that is highly structured, following the sequence of learning presented in the textbook on paper.
Theoretical framework

- *Activity Theory* (Vygotsky, Leont'ev), assuming its system of collective activity (object oriented and mediated by artifacts).
 (Engeström, 2001)

- The concept of *instrumental genesis* that involves two processes: *instrumentalization* and *instrumentation*. These processes enable the development and evolution of the instruments.
 (Rabardel, 1995)

- The notion of *documentational genesis*. It is a construct that expands the concept of artifact by defining the notion of document as building utilization schemes in teachers action mediated by didactical resources.
 (Gueudet and Trouche, 2012)
Methodology

• This study follows a methodology of qualitative nature and is based on two case studies.

• Involve two groups of secondary school students that use mainly textbooks, and this was the first time that they used the electronic resource as a learning tool.

• Each case study involves several work sessions with the tool. One case is centered on the theme of functions and the other in geometry.
Methodology

- Students are organized in groups of two.
- Working sessions were recorded by special software that records sound and all actions carried out on the computer screen.
- Contents have not been addressed previously by the teacher.
- The process of instrumental genesis started simultaneously with the learning process.
Learning environment *(Escola Virtual)*

- Two topics:
 - quadratic functions;
 - Cartesian geometry.

- These case studies are based on the use of a CD ROM.
Implementation of the learning environment

• Initially students followed the structure of the lesson presented in the tool, with some differences:
 • students who studied the quadratic function had a guiding worksheet to explore the tool;
 • students who have studied geometry followed the topics presented in the tool and then they used a worksheet with exercises provided by the teacher.

• Students have appropriated quickly the use of the tool and the instrumentalization process was relatively short.

• The didactic proposal presented in the tool sometimes did not promote the learning of concepts. In both cases, the teacher provided worksheets.
Potentials of the tool

- The instrumentation process was short due to the high degree of the structuring of concepts presentation.

Alberto - The 1st video explains well the definition of concavity of a graph of a function at a given interval. You understand Elisabete?

Elisabete - Yes. The graph has a concavity facing upwards if in that range is above all lines tangent to the curve. Is this correct what I said?

Alberto - Okay. Now come to the 2nd and 3rd videos. The signal of a, the coefficient of the term of degree 2, the quadratic function, varies the direction of the concavity of the parabola. Correct?

Elisabete - Yeah, I get it. And the greater the absolute value of a the parabola more approaches the ordinate axis.
Potentials of the tool

- Learning concepts is highly potentiated by the possibility of manipulate different representations of the concept (e.g., the manipulation of selectors).

Elisabete - The 1st video consolidates what we learned earlier: the parameter a will cause the parabola stretch or shrink horizontally.

Alberto - Explain yourself better!

Elisabete - Notice that the longer the absolute value of a more parabola closes around the y-axis.

Alberto - Okay, let’s now see the h in $(x-h)^2$?

Elisabete - The parabola moves horizontally to the right and to the left, when we change h.

Alberto - And it is the x-coordinate of the vertex of the parabola.

Elisabete - I get it! And the k does the parabola go up or down. And is the ordinate of the vertex.
Potentials of the tool

- Motivation increased with the performance of self-corrective tasks providing competition among students.

- Self-corrective tasks improve performance of algebraic procedures even when these are routine.

(Each of the students went to a computer and individually used the CD-ROM to solve the task, proposed by the teacher and based on the exercises of the tool).

Elisabete - Of the 36 possible correct answers I missed 4. I did not hit, for example, in the calculation of the zeros and the coordinates of the vertex of the parabola. But I returned to do this exercise (on the sheet of paper) and found where I went wrong.

Alberto - I got it all at first. Good!
Constraints of the tool

- Formal language used in audio and video texts is hard to grasp.

Alberto - Did you understand the resolution of this problem?

Elisabete - I had difficulty in calculating the values that the length of the rectangle can take.

Alberto - Would you repeat the video?

Elisabete - Yes. [after 2nd visualization of the video] What values can c take? Explain to me this step because the video is not very clear on this point.

Alberto - Consider: the width $l=50-c$ can not be negative or zero. $50-c>0 \iff -c>-50 \iff c<50$.

Elisabete - And c is greater than zero, it is a length. And the value of c which corresponds to a maximum area? How do you find this value without having heard the answer given by the video? Did you notice that the parabola drawn on the CD-ROM does not pass the origin? It is wrong because when $c=0$ the area is zero. We found an error in the CD-ROM!

What is the rectangle of largest area that can be constructed with a cord of 1 meter?
Constraints of the tool

- The use of symbolic representations that students sometimes did not dominate because they are too formal;

Teacher: Let’s see. You are not understand?

Vanessa: No, I'm not realizing.

Teacher: You do not understand what?

Vanessa: I do not understand this thing of signals.

[They hear a little more of the audio of negation]. (…)

Teacher: So what is the question?

Vanessa: It’s here “stor”, I can not understand these expressions.
 [Points to the expressions below]
Constraints of the tool

- Solving self-corrective tasks can be performed without an understanding of the mathematical concepts involved. *Students can use a process of trial and error, correcting their wrong answers.*

- The tool is not *open-access* which restricts its use outside the context of the classroom. *These constraints lead teachers to develop specific kinds of documents.*
Final remarks

- Highly structured technological tools (akin to tutorials) can be good learning tools.

- The process of instrumental genesis can be short when the tool is very structured, but can cause understanding difficulties for less gifted students.

- When computational tools are used, documentational genesis can become a powerful artefact to develop schemes that promote student’s learning.

- The documentational genesis can be developed either based on the potentialities either based on the constraints of the tool.
Thank you for your attention