
Studies on extraction, characterization and antioxidant activity of biocolour extracted from plum waste
 > Colour

 Training workshop on Characterization of Fresh and Processed Full Quality, organised by the CUC, University of Southampton and the Norgi Law University University. UK Dated 2: 22: July, 2012
 > Food

Shailendra K Dwivedi

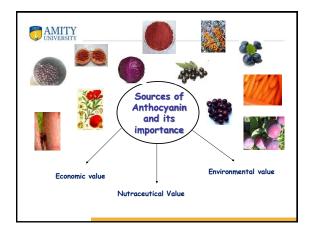
Amity International Centre for Postharvest Technology and Cold-Chain Management, Amity University, Noida-125, Uttar Pradesh, INDIA Email: <u>skdwived(@amity.edu</u>

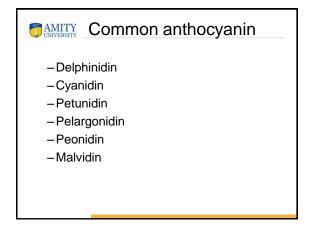
COLOURING	SHADES	
Coal tar dyes:		
Allura red, Amaranth Azorubine, onceau 4R	Red	
Sunset Yellow Tartrazine, Yellow 2G	Yellow	
Green S	Green	
Brilliant Blue FCF Indigotine	Blue	
Brown HT	Brown	
Brilliant Black BN	Black	

	ECTS OF SYNTHETIC COLOURS
Pigments	Health Effects
Brillient blue FCF	Chromosomal damage
Indigo carmine	Brain tumor
Brillient green acid	Brain tumor
Fast Green FCF	Bladder tumor
Tartrazine	Thyroid and lymphatic tumors, Allergy
Yellow Orange S	Kidney tumors, Chromosomal damage

What are Biocolours ?

Natural colours are generally extracted from fruits, vegetables, roots and microorganisms and are often called "biocolours" because of their biological origin.


Benefits of Biocolours


- Biocolours have protective role against lethal photo oxidation.
- Antioxidant activity by protecting cells against oxidative damage which leads to degenerative diseases such as atherosclerosis, cancer, arthritis and macular degeneration.
- · Inhibition of mutagenesis.
- Enhancement of immune systems.
- Inhibition of tumour development.

MIC ANALTIN	e of Biocolours heir shades
Annato , Carotenoids Beetroot extract Fruit & vegetable juices/extracts Grape skin extract Paprika, Riboflavin Saffron, Turmeric	Yellow to Red
Caramel	Yellow to brown
Chlorophyll	Green
Vegetable carbon	Black

TANKEN What Are Anthocyanins?

- Natural, water-soluble plant pigments Display a variety of pH dependent colors
- Polyphenolic compounds (flavonoids)
- ✤Used as food colorants
- ✤Numerous "functional" components

AMITY Anthocyanins **Applications** Sources and Grape skin · Soft drinks Red cabbage Instant drinks

- Elderberry
- · Purple carrots
- Purple potatoes
- Red radish
- Jamun, Phalsa, Black Carrot, Kokum, Mulberry, Strawberry, blueberry, blackberry, black current, hibiscus, roselle

- · Fruit drinks
- Liquors
- Confectionery
- · Fruit jellies
- Jams

Plum - a rich source of AMITY anthocyanin

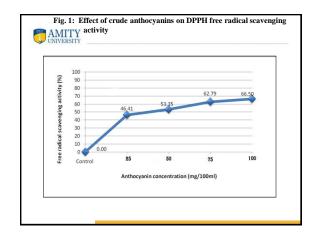
• Plum (Prunus salicinia Lind.), is one of the most important fruit crop of Himachal Pradesh, INDIA

- · Plum is a natural rich source of anthocyanins
- · Processing waste of the plum contains sufficient quantity of anthocyanin pigments

Table 1: Physico-chemical characteristics of plum fruit, pulp a pomace (var. Santa Rosa)			t, pulp and
UNIVERSITY	Mean± SD	Range	CV
Plum Fruit			
Fruit Weight (g)	33.80±1.62	32.00-36.00	4.79
Pulp (per cent)	52.20±2.15	49.00-55.00	4.12
Pomace (per cent)	5.50±0.20	5.20-5.80	3.64
Total soluble solids (°B)	15.00±0.52	13.80-15.40	3.50
Titratable acidity (as % malic acid)	2.04±0.03	1.98-2.08	1.47
pH	3.28±0.04	3.24-3.39	1.22
Total anthocyanins (mg/100g)	34.20±2.15	31.00-37.00	6.29
Plum Pulp			
Total Soluble Solids (°B)	14.56±0.25	14.20-14.80	1.72
Titratable acidity (as % malic acid)	1.98±0.14	1.88-2.10	7.07
pH	3.41±0.06	3.26-3.49	1.80
Total phenolics (mg/ 100g)	77.90±1.20	76.72-80.90	1.55
Total anthocyanins (mg/100g)	48.52±0.38	43.10-57.4	0.78
Plum pomace			
Total soluble solids (°B)	0.82±0.03	0.78-0.89	3.66
Titratable acidity (per cent as malic acid)	1.55±0.02	1.51-1.59	1.29
pH	3.62±0.21	3.19-3.73	5.80
Total phenolics (mg/ 100g)	215.70±2.06	212.00-219.00	0.95

Extraction methods	λ-max (nm)	Optical Density (at 535 nm)	١	ïntometer colour u	nit
			Red	Yellow	Blue
(T ₁) : Pomace + Water (1:1)	301	4.00	4.50	1.50	0.30
(T ₂) : Pomace+ 20% Ethanol (1:1)	298	4.00	4.40	2.10	0.04
(T ₃) : Pomace + 20% Acetone (1:1)	304	4.00	4.30	1.50	0. 08
(T ₄): Plum pomace fermented with brewer's yeast	305	4.00	4.50	2.00	0.10
(T ₅): Plum pulp fermented with brewer's yeast	343	4.00	3.50	2.20	0.10
CD (0.05)			0.27	0.30	0.14

Method	Spot No.	Rf value	Visibility	Rf value in literature	Anthocyanin identified
(T1) : Pomace +Water	1	0.203	Ultra-violet	0.20	Cyanidin-3,5-diglucoside
(1:1)	2	0.222	Day Light	0.22	Malvidin-3-monoglucoside
	3	0.685	Ultra-violet	0.68	Cyanidin-3-monoglucoside
(T ₂) : Pomace+ 20% Ethanol (1:1)	1	0.260	Ultra-violet	0.26	Delphinidin-3-monoglucoside
Editation (111)	2	0.552	Ultra-violet	NI	NI
(T ₃) : Pomace + 20% Acetone (1:1	1	0.200	Ultra-violet	0.20	Cyanidin-3,5-diglucoside
	2	0.247	Ultra-violet	NI	NI
(T ₄) : Plum pomace	1	0.197	Ultra-violet	0.20	Cyanidin-3,5-diglucoside
fermented with wine	2	0.292	Day Light	0.30	Malvidin-3,5-diglucoside
yeast	3	0.583	Ultra-violet	NI	NI
	4	0.708	Ultra-violet	NI	NI
(T5): Plum pulp	1	0.304	Day light	0.30	Malvidin-3,5-diglucoside
fermented with wine yeast	2	0.473	Ultra-violet	NI	NI


Extraction of anthocyanins from pomace extract

- Crude anthocyanins were extracted by column chromatography using amberlite XAD-16 resin as adsorbent.
- 35% XAD-16 was used for the best adsorption of anthocyanins
- Elution was done by using 60% ethanol.

AMITY anthocyani UNIVERSITY			Colour values (units)	1
	•	L	а	b
C ₁ : Co	ntrol	25.17	48.49	8
Γ ₁ : Temperature 80°C	10 minutes	38.48	44.43	11
	20 minutes	40.03	43.37	12
2 : Temperature 100° C	10 minutes	40.15	43.28	12
	20 minutes	41.33	43.07	13
f ₃ : Temperature 121⁰C	10 minutes	36.93	42.40	13
	20 minutes	35.46	42.25	13
CD _{0.05}		0.06	0.50	NS

	1	Anthocyanin		
pH	Red	Yellow	Blue	degradation (%)
C1: Control	12.50	7.40	0.80	0
(T ₁) : 2.0	12.40	7.50	0.80	0
(T ₂): 2.5	12.40	7.50	0.80	0.95
(T ₃): 3.0	12.20	7.30	0.60	0.95
(T ₄): 3.5	12.00	7.30	0.60	0.97
(T ₅): 4.0	12.00	7.20	0.60	5.72
(T ₆): 4.5	11.80	7.20	0.50	10.48
(T ₇): 5.0	11.60	6.80	0.50	10.48
(T ₈): 5.5	11.60	6.90	0.60	13.34
(T ₉): 6.0	11.60	7.00	1.50	14.29
T ₁₀):7.0	11.20	6.40	1.70	15.24
(T ₁₁) : 8.0	11.00	6.20	2.10	18.10
(T ₁₂) :9.0	10.80	5.80	1.60	20.00
(13) : 10.0	10.80	6.00	2.20	21.43
CD _{0.05}	0.44	0.64	0.36	0.04

of

CONCLUSION **AMITY** · The anthocyanin yield indicates that plum pomace is a suitable source for anthocyanins production with optimum condition extraction. Anthocyanins are potential antioxidants agent • for use in food products which will improve the appearance as well as nutritional quality of the food. The evaluation of pigment thus supports the hypothesis of the using anthocyanins as natural and attractive source of colour or

biocolour.

AMITY

- · Low pH stability of anthocyanins indicates the best possible use of anthocyanins as a colorant in acidic foods like beverages, jam, jellies etc.
- Since anthocyanin is water soluble, the plum anthocyanin can be used commercially in food products where water is the main solvent.
- Thus it can be concluded that plum pomace can be utilized for the production of biocolour that can replace the synthetic food colours.

AMITY THANK YOU