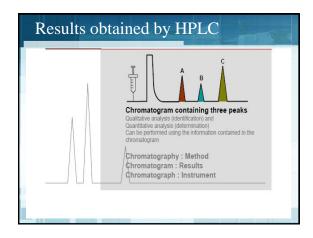
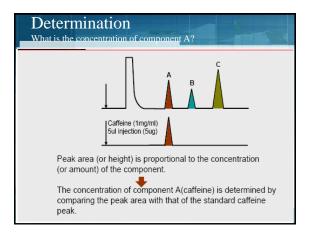
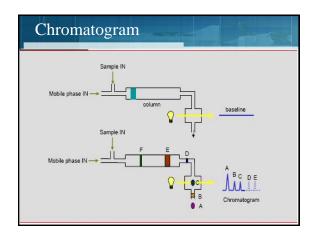
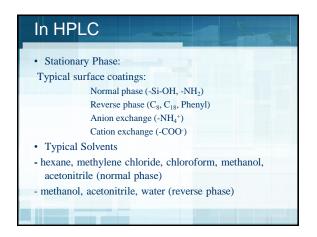
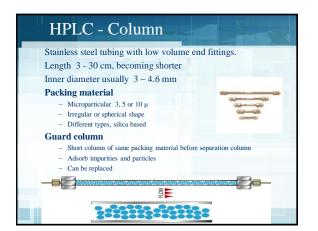

Chromatography Principle

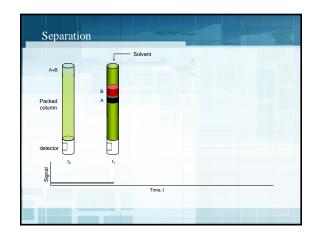

• In chromatography process, separations are based on differences in migration rates among the sample components because they have differences interactive forces with stationary phase.

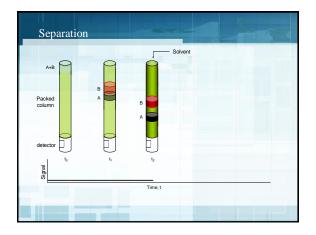

Mobile phase	Carrier gas: N2, He, Ar	Polar and non-polar solvent such as: MeOH, acetonitril, water
Stationary phase Analyzed objects	Solid: film layer in capillary column Samples easily evaporate (<300°C) or durable with heat.	Solid or liquid covering particles in packed column Samples easily degrade by heat on has molecule mass > 3000 u.

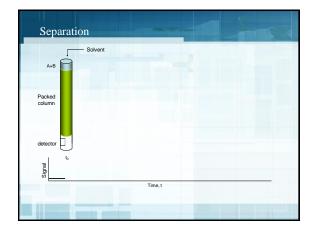


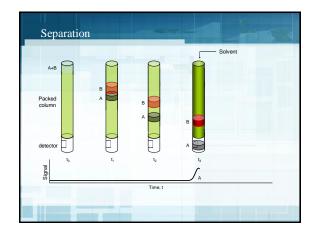


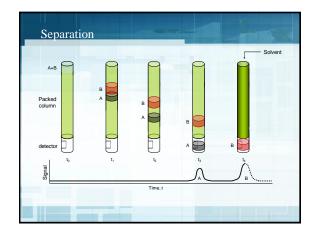






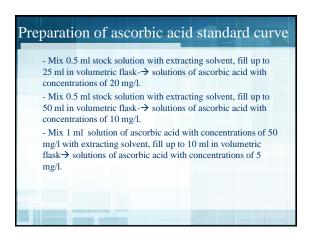






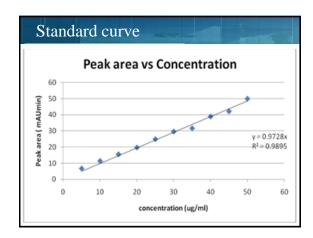
Comparison of commercial HP	ble 25-2	
Detector	Approximate limit of detection" (ng)	Useful with gradient?
Ultraviolet	0.1-1	Yes
Refractive index	100-1000	No
Evaporative light-scattering	0.1-1	Yes
Electrochemical	0.01-1	No
Fluorescence	0.001-0.01	Yes
Conductivity	0.5-1	No
Mass spectrometry	0.1-1	Yes
Fourier transform infrared	1 000	Yes



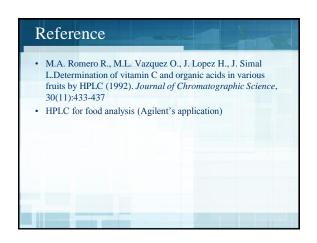


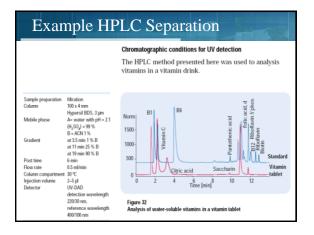
Preparation of ascorbic acid standard curve

- Stock solution: dissolve 10 mg of ascorbic acid in 10 ml of extracting solution. Carry to 10 ml using dark volumetric flask.
- Prepare ascorbic acid standard solutions of ascorbic acid with concentrations of 5,10, 20, 30, 40 mg/l.
 - Mix 2.5 ml stock solution with extracting solvent, fill up to 50 ml in volumetric flask-→ solutions of ascorbic acid with concentrations of 50 mg/l.
 - Mix 1 ml stock solution with extracting solvent, fill up to 25 ml in volumetric flask- \rightarrow solutions of ascorbic acid with concentrations of 40 mg/l.
 - Mix 1.5 ml stock solution with extracting solvent, fill up to 50 ml in volumetric flask-→ solutions of ascorbic acid with concentrations of 30 mg/l.


Determination L-ascorbic acid (AA)

- AA is a water soluble organic compound that participates in many biological processes.
- In samples, vitamin C concentration is total content of ascorbic acid and dehydroascorbic acid; dehydroascorbic acid did not account for more than 10% of total vitamin C in any of the analysed fruits as has been described by Lee and Kader (2000).
- In our lab, we extract AA in matrices by using acid solvent which has pH 2.1 (titrate by H_2SO_4) and quantify its concentration by using HPLC with RP-column and UV detector.


Procedure of determination AA


- Weigh 2-5 g sample into centrifugal bottle.
- Add 50 ml acidic solvent pH 2.1 (extracting solvent).
- Mix thoroughly to obtain homogenous slurry by using Ultra-Turax in 3 minutes.
- Centrifuge at 4000 rpm, 4°C in 20 minutes.
- · Give extract in 100 volumetric glass flask.
- Wash centrifugal bottle with 10 ml acidic solvent pH 2.1
- Combine washing solvent in volumetric glass flask and add acidic solvent up to 100 ml.
- Filter extract through 0.2 μm membrane.
- Inject 20 µl filtrate into HPLC system.

Analytical conditions				
 Agilent 1100 Column: Agilent 10 cm x 4.6 cm x 3 μm Flow: isocratic elution 0.5 ml/minute. 				
UV Detector: 254 nm. Mobile phase: 100 % acidic solvent pH 2.1 Calculation: Cm x V (ml)				
Vitamin C conc. = (mg/Kg or mg/L) m (g or ml)				
Cm: Vitamin C conc. is calculated base on standard curve. Vm: 100 ml (the final volume of extract). m: weight of sample (g).				

