The Development and Qualification of the STAR Resistojet System for Telecommunications Applications

Federico Romei¹, Matt Robinson¹, Chris Ogunlesi¹, Dave Gibbon²

and

Angelo Grubišić¹ (1981 - 2019)

36th International Electric Propulsion Conference
University of Vienna • Vienna, Austria
September 15-20, 2019

¹University of Southampton, Southampton, SO17 1BJ, UK
²Surrey Satellite Technology Ltd, Guildford, GU2 7YE, UK
UK Space Agency Flagship

- Super-High Temperature Resistojets for All-Electric Telecommunication Satellites (STAR)

- National Space Technology Programme (NSTP) Flagship project: 2-years TRL innovation (KO in April)

- Consortium:
 - Developed High-Temperature Resistojet (HTR) AM design
 - Proved first AM resistojet prototype in 316L†
 - Goal: design and testing of STAR EM model in high-temperature materials

†Manufacturing of a high-temperature resistojet heat exchanger by selective laser melting F Romei, AN Grubišić, D Gibbon – Acta Astronautica, 2017
UK Space Agency Flagship

- Super-High Temperature Resistojets for All-Electric Telecommunication Satellites (STAR)
- 2-years TRL innovation project (KO in April)
- Consortium:
 - Global supplier of refractory metal powders for AM
 - Developer of advanced refractory metal alloys
 - Custom SLM powder including Ta/W alloys
Super-High Temperature Resistojets for All-Electric Telecommunication Satellites (STAR)

2-years TRL innovation project (KO in April)

Consortium:

- Market leader in additive manufacturing
- Produced parts in nickel alloys and pure Ta. Next will produce parts in Ta/W alloys
UK Space Agency Flagship

- Super-High Temperature Resistojets for All-Electric Telecommunication Satellites (STAR)
- 2-years TRL innovation project (KO in April)
- Consortium:
 - Independent innovation and technology company
 - Develop standardization processes and secure supply chain strategy for the STAR thruster
UK Space Agency Flagship

- Super-High Temperature Resistojets for All-Electric Telecommunication Satellites (STAR)
- 2-years TRL innovation project (KO in April)
- Consortium:
 - World's leading small satellite manufacturer
 - Extensive heritage with Xe and butane resistojets
 - End user requirements and guidelines for the STAR
State of the Art Xenon Resistojets (SSTL)

- Small satellite orbit correction and station keeping
- Heater 28V DC bus voltage at 15W and 30W

<table>
<thead>
<tr>
<th>Variant</th>
<th>Redundant heater power</th>
<th>Propellant</th>
<th>Thrusters</th>
<th>Typical operation temperature</th>
<th>I_{sp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>T30</td>
<td>30 W</td>
<td>Xe</td>
<td>10 launched on 10 S/Cs, 2 waiting launch</td>
<td>530°C</td>
<td>48 s</td>
</tr>
<tr>
<td>T15</td>
<td>15 W</td>
<td>C4H${10}$</td>
<td>19 launched on 10 S/Cs, 4 waiting launch</td>
<td>250-350°C</td>
<td>> 100</td>
</tr>
</tbody>
</table>
Concept of the STAR Thruster

- Maximise specific impulse, hence stagnation temperature

\[I_{sp} \approx \frac{1}{g_0} \sqrt{\frac{2c_{p,m}T_0}{M}} \]

- 3D printed monolithic regenerative heat exchanger

- 316L prototype \((T_0 = 1,000 \text{ K})\) demonstrated†

- Refractory metals \((T_0 > 2,500 \text{ K})\) to reach \(I_{sp} > 80\) s with Xe

†Validation of an Additively Manufactured Resistojet through Experimental and Computational Analysis F. Romei, A. Grubišić – Acta Astronautica, 2019
Concept of the STAR Thruster

- Maximise specific impulse, hence stagnation temperature

\[I_{sp} \approx \frac{1}{g_0} \sqrt{\frac{2c_{p,m} T_0}{M}} \]

- 3D printed monolithic regenerative heat exchanger

- 316L prototype \((T_0 = 1,000 \text{ K})\) demonstrated\(^\dagger\)

- Refractory metals \((T_0 > 2,500 \text{ K})\) to reach \(I_{sp} > 80 \text{ s with Xe}\)

\(\dagger\)Validation of an Additively Manufactured Resistojet through Experimental and Computational Analysis F. Romei, A. Grubišić – Acta Astronautica, 2019
Application 1: Stand-Alone Propulsion

- **Small Satellites:**
 - Limited resources
 - Volume (0.75 m³)
 - Mass (200 kg)
 - Power (100 W)
 - Dependence on:
 - High storage density – \(I_{sp} \) product
 - Inert propellants
 - Lower cost of AIT

- **Resulting system:**
 - Low \(I_{sp} \)
 - Low total impulse/ low \(\Delta v \)
 - Limited on-orbit/deorbit capability
 - +70% \(\Delta v \) from STAR thruster = game changer

RapidEye constellation, SSTL (Xe resistojet)

Disaster monitoring constellation AISAT-1, SSTL (Butane resistojet)
Application 2: All-Electric Spacecraft

▪ Advantages of A-E spacecraft:
 – Common Xenon Propellant Management System
 • System mass saving (1 vs 2 PMS)
 • Complexity reduction and reuse of architecture
 • PPS & RCS mass fraction optimisation (Deep Space 1, SMART 1, Hayabusa)
 – Absence of hydrazine
 • Lower cost of AIT
 • Lower risk of regulation changes
 – Safe mode operations
 • Xe resistojets can operate in cold redundancy for safe mode/de-spin

Boeing – 702SP (ABS-3A and Eutelsat 115 West B, 2015)

OHB System – Electra, SmallGEO Flex platform (http://www.esa.int/)
Low Reynolds number nozzles at high temperature

Need of high nozzle efficiency (>90%), i.e. \(\text{Re}_t > 4000 \)

To size the nozzle based on mission requirements
Nozzle Considerations

- LEO application: primary propulsion for Δv manoeuvres (no pulse)
- Material: nickel alloys, temperature range: 1,100 K – 1,400 K

Stagnation pressure (left) and nozzle efficiency (right) colormaps with overlaid nozzle performance in terms of thrust (----) and specific impulse (-----) iso-contours as function of the mass flow rate and propellant stagnation temperature T_0. Calculations are made for $d_i = 0.3\, \text{mm}$.
Nozzle Considerations

- LEO application: primary propulsion for Δv manoeuvres (no pulse)
- Material: nickel alloys, temperature range: $1,100$ K – $1,400$ K

Stagnation pressure (left) and nozzle efficiency (right) colormaps with overlaid nozzle performance in terms of thrust (-----) and specific impulse (-----) iso-contours as function of the mass flow rate and propellant stagnation temperature T_0. Calculations are made for $d_i = 0.3$ mm.

Design point:

\[F = 50 \text{ mN} \]
\[I_{sp} = 60 \text{ s} \]
\[p_0 = 5 \text{ bar} \]
\[P_e < 50 \text{ W} \]
\[\eta_{ts} > 60\% \]
Nozzle Considerations

- GEO A-E application: RCS, de-spin and momentum damping
- Material: Ta/W alloys, temperature range: 2,100 K – 2,600 K

Stagnation pressure (left) and nozzle efficiency (right) colormaps with overlaid nozzle performance in terms of thrust (———) and specific impulse (———) iso-contours as function of the mass flow rate and propellant stagnation temperature T_0. Calculations are made for $d_t = 0.6$ mm.
Nozzle Considerations

- GEO A-E application: RCS, de-spin and momentum damping
- Material: Ta/W alloys, temperature range: 2,100 K – 2,600 K

Stagnation pressure (left) and nozzle efficiency (right) colormaps with overlaid nozzle performance in terms of thrust (-----) and specific impulse (———) iso-contours as function of the mass flow rate and propellant stagnation temperature T_0. Calculations are made for $d_t = 0.6$ mm.

Design point:

- $F = 200\, \text{mN}$
- $I_{sp} > 80\, \text{s}$
- $p_0 = 5\, \text{bar}$
- $P_e < 150\, \text{W}$
- $\eta_{fs} > 60\%$
Iterative Heater Design

Low resistance (low risk – high priority)

- Straight cylinders

Medium resistance (medium risk – medium priority)

- Heater with inner helix
- Heater with meshed cylinders

High resistance (high risk – low priority)

- Single track helix
Iterative Heater Design

- **Heater resistance ~ 10 mΩ**

<table>
<thead>
<tr>
<th>Resistance Level</th>
<th>Design Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low resistance</td>
<td>Straight cylinders</td>
</tr>
<tr>
<td>Medium resistance</td>
<td>Heater with inner helix, Heater with meshed cylinders</td>
</tr>
<tr>
<td>High resistance</td>
<td>Single track helix</td>
</tr>
</tbody>
</table>

Straight cylinders: first design in 316L (left) and current design in Nickel alloy (right)
Iterative Heater Design

- **Low resistance (low risk – high priority)**
 - Straight cylinders

- **Medium resistance (medium risk – medium priority)**
 - Heater with inner helix
 - Heater with meshed cylinders

- **High resistance (high risk – low priority)**
 - Single track helix

- Heater resistance ~ 100 mΩ

Meshed cylinders design
Iterative Heater Design

- **Heater resistance ~ 1 Ω**

Low resistance (low risk – high priority)

- Straight cylinders

Medium resistance (medium risk – medium priority)

- Heater with inner helix
- Heater with meshed cylinders

High resistance (high risk – low priority)

- Single track helix
STAR PCU development

- **LEO application:**
 - EM model for full STAR system tests
 - low cost, current controlled output

- **A-E GEO application:** BOM and schematics only
Test Campaign

- **Sub-component:**
 - Heater cycling tests of several designs -> selection of heater
 - M. Robinson (A393): Ta - low resistance design: ~ 340 cycles performed, 120 at 80% of T_{max}
 - Selective Laser Melting high temperature properties
 - C. Ogunlesi (A403): surface emissivity and electrical conductivity at high-temperature
 - PCU design + environmental testing

- **Full system (STAR thruster + PCU) tests:**
 - Thermal cycling + vibration + shock tests
 - Leak + performance tests + thruster cleanliness verification
 - Life test + NDT inspection
Summary of STAR project

Phase 1:
- Investigate on resistivity and surface emissivity of SLM custom material
- Iteration of heater design to maximise lifetime/electrical resistance

Phase 2:
- Testing of PCU
- Testing of STAR thrusters in Ta/W and nickel alloys
- STAR system EM model test
The Development and Qualification of the STAR Resistojet System for Telecommunications Applications

Federico Romei¹, Matt Robinson¹, Chris Ogunlesi¹, Dave Gibbon²

and

Angelo Grubišić¹ (1981 - 2019)

Thank you for your attention

email: federico.romei@soton.ac.uk

36th International Electric Propulsion Conference

University of Vienna • Vienna, Austria

September 15-20, 2019